• Users Online: 2267
  • Print this page
  • Email this page
Year : 2019  |  Volume : 52  |  Issue : 2  |  Page : 45-51

Biodegradation patterns of injected composite bone cements in porcine vertebral bodies: A study using quantitative computed tomography

1 Department of Radiology, En Chu Kong Hospital, New Taipei City; Department of Medical Imaging and Radiological, Yuanpei University of Medical Technology, Hsinchu City, Taiwan
2 Department of Medical Imaging and Radiological, Yuanpei University of Medical Technology, Hsinchu City, Taiwan
3 School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
4 Department of Surgery, En Chu Kong Hospital, New Taipei City; Department of Biomedical Engineering, Yuanpei University of Medical Technology, Hsinchu City, Taiwan

Correspondence Address:
Dr. Chang-Chin Wu
Department of Surgery, En Chu Kong Hospital, No. 399, Fuxing Rd., Sanxia District, New Taipei City 23702
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/fjs.fjs_60_18

Rights and Permissions

Background: For vertebroplasty, newly synthesized bone cements are proposed to replace traditional polymethylmethacrylate (PMMA). Most inventors initially evaluated these newly developed cements in animal spine models. However, even these time- and work-consuming histological inspections performed meticulously by experienced hands, there are still lots of specimen lost during the processing procedures. Although the histological sections can reveal new bone formations and surrounding tissue reactions to implanted materials, it is difficult to identify the degradation processes of the injected cement. In fact, there is no standard method to quantify the volume changes of injected substitutes postoperation. Methods: Previously, we developed two new biodegradable cements and evaluated performances in fixed-volume and fixed-shaped holes in vertebral bodies of porcine lumbar spine. The animals were sacrificed and the retrieved spines were analyzed after 3 and 6 months. Herein, we further used computed tomography (CT) and three-dimensional CT (3D-CT) to quantitate volumes and biodegradation of cements inside vertebral bodies after previous attestation of CT findings. Exteriors of controls and injected materials were reconstructed with different Hounsfield units (HU); changes of HU as well as cement volumes were later calculated. Results: The results revealed that the volumes and shapes of these biodegradable cements can be determined by 3D-CT. After meticulous comparisons among gross specimens, histologies, and CT images, the different patterns observed in CT implied consistency among all three observations. Gradual reductions of HU and volumes of newly synthesized cements showed the degradability. Meanwhile, consistent HU and volumes of PMMA meant its inertness. Conclusion: CT imaging may be a preliminary, quantitative, and liable way for evaluating injectable bone cements in the vertebral bodies.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded269    
    Comments [Add]    

Recommend this journal